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The Force is Strong in Tractable Circuits

Probabilistic Circuits

• representations of high-dimensional probability distributions

• probability = optimal and consistent reasoning under

uncertainty (≈ half way to AI)

• circuit structure enables exact probabilistic reasoning

Logic Circuits

• representations of large (propositional) logical formulas

• circuit structure enables exact logical reasoning

• symbolic language suitable for humans

Circuits as Neural Nets

• connects with machine learning
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Probabilistic Circuits Definition

Leaves are distributions (L), internal

nodes are sums (S) or products (P).

Smoothness: inputs of sum node are

over same scope—means that sums are

proper mixtures.

Decomposability: inputs of products

are over disjoint scopes—means that

products are proper factorizations.

Structured Decomposability: products

over same scope factorize the same way

Determinism: at most input to each

sum node is non-zero
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Logic vs. Probabilistic Circuits
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Inference in PCs

• smoothness and decomposability enable tractable

marginalization and conditioning

• determinism enables tractable maximization

• structured decomposability (compatibility) enables circuit

multiplication

• . . .
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Marginalization Example
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Assume we want to

marginalize a variable M,

which is contained in U .

The core of probabilistic

inference.



Marginalization Example

5



Marginalization Example

5



Marginalization Example
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Due to decomposability, M

appears only in one child of

each product node



Marginalization Example
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Marginalization Example
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Reduces to marginalization

at leaves & standard

forward pass!



Circuits for Neuro-Symbolic AI [Ahmed et al., NeurIPS’22]

Classical neural nets don’t know logical structure, so let’s tell

them. . .
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Side Channel Attacks [Master Thesis of Thomas Wedenig]

Crypto algorithms are save – unless executed on a physical device
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Advanced Encryption Standard (AES-128)

• uses a 128 bit key to convert a plain text into a cypher

• 10 rounds of SubBytes, ShiftRows, MixColumns (until round

9), AddRoundKey
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Soft Analytic Side Channel Attacks (SASCA)
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MixColumns

leakages

SASCA: loopy belief propagation to infer key k1, k2, k3, k4

surprisingly effective and state of the art!



Loopy Belief Propagation Recap

factor graphs: represents (unnormalized) distributions as
∏

f f (X )

belief propagation: computes marginals via message passing

Exact on trees, but very limited guarantees on loopy graphs. . . 10



Exact SASCA with Circuits

• compile MixColumns to an SDD (structured decomposable)

• compile leakage distributions (256 states) to compatible

PSDDs

• apply circuit multiplication, yielding a “big” joint over all

variables

• infer key via tractable marginal query – this is still message

passing, but on a high-dimensional tree (exact)
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Dirty Tricks

• circuit multiplication is quadratic

• 9 circuits involved, so this didn’t take off

• thus, approximate the leakage distributions

1. assume conditional independence

changed the distributions too much, led to inferior performance

2. sparsify

many values close to zero; take states corresponding to 1− ε
of the mass, set the rest to zero, re-normalize

• with simplified leakage distributions, we indeed could perform

exact inference
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Results
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Towards DNA-based Storage

Using DNA origamis as “compact disc”

Integrated Pipeline

Advantages: more reliable, parameter-efficient, data-efficient
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Continuous Generative Models and

Probabilistic Circuits



Inference in Generative Models

Among generative models, PCs have excellent inference properties:

GANs VAEs EBMs Flows ARMs PCs

sampling

density

marginals

condition

moments

max (MAP) ( )

E ( )
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But, PCs usually have worse performance, in terms of

log-likelihood, sample quality, . . .

One reason is the tractability-expressiveness dilemma

Another might be the “discrete nature” of PCs, while many

successful generative models can be seen as continuous mixtures
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Mixture Models

• discrete mixtures

p(x) =
K∑
i=1

wk pi (x) =

latent variable interpretation︷ ︸︸ ︷
K∑
i=1

p(z = i) p(x | z = i)

• e.g. Gaussian mixtures, PCs

• many tractable inference scenarios

• continuous mixtures

p(x) =

∫
p(z) p(x | z) dz

• VAEs, GANs, Flows, etc.

• p(z) usually simple, e.g. white Gaussian

• p(x | z) via neural net—continuity between x and z
• usually intractable inference, due to high-dimensional integral
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• Can we get best of both worlds?

• Continuous latent variables in PCs (“integral nodes”)?

• Also, can we still have tractable inference, please?

Arbitrary integrals are hard, but for low-dimensional z

p(x) =

∫
p(z) p(x | z)dz

becomes “morally tractable.” We might just apply good old

numerical integration, such as quadrature rules:∫
p(z) p(x | z)dz ≈

∑
i

wz∗
i
p(z∗

i ) p(x | z∗
i )

The sum brings us back to circuit land!
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• model distribution: p(x) =
∫
p(z) p(x | z) dz

• p(z) is a low-dimensional white Gaussian

• p(x | θ(z)) is a PC, whose parameters θ depend on z via a

neural net

• we used pretty simple PC structures, such as complete

factorized distributions and Chow-Liu trees
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Results on 20 Binary Datasets
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Samples
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Probabilistic Integral Circuits (PICs)

Have many integral nodes in PCs, i.e. local continuous mixtures

(submitted).

with G. Gala, C. de Campos, A. Vergari, E. Quaeghebeur 22



PIC Overview
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Light-weight Energy-based Models

24



Results
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Compatible vtrees
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