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The Force is Strong in Tractable Circuits

Probabilistic Circuits

e representations of high-dimensional probability distributions

e probability = optimal and consistent reasoning under
uncertainty (& half way to Al)

e circuit structure enables exact probabilistic reasoning

Logic Circuits

e representations of large (propositional) logical formulas
e circuit structure enables exact logical reasoning

e symbolic language suitable for humans
Circuits as Neural Nets

e connects with machine learning



Probabilistic Circuits

Leaves are distributions (L), internal
nodes are sums (S) or products (P).

Smoothness: inputs of sum node are
over same scope—means that sums are
proper mixtures.

Decomposability: inputs of products
are over disjoint scopes—means that
products are proper factorizations.

Structured Decomposability: products
over same scope factorize the same way

Determinism: at most input to each

sum node is non-zero



Logic vs. Probabilistic Circuits

allh o ]
Corporate needs you to find the differences
between this picture and this picture.

They're the same picture.




Inference in PCs

e smoothness and decomposability enable tractable
marginalization and conditioning

e determinism enables tractable maximization

e structured decomposability (compatibility) enables circuit
multiplication



Marginalization

Assume we want to
marginalize a variable M,
which is contained in U.
The core of probabilistic
inference.




Marginalization




Marginalization




Marginalization

Due to decomposability, M
appears only in one child of
each product node




Marginalization




Marginalization

Reduces to marginalization
at leaves & standard
forward pass!




Circuits for Neuro-Symbolic Al [Ahmed et al., NeurlPS’22]

Classical neural nets don't know logical structure, so let's tell
them. ..
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Side Channel Attacks [Master Thesis of Thomas Wedenig]

Crypto algorithms are save — unless executed on a physical device
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Advanced Encryption Standard (AES-128)

(1) SubBytes (2) ShiftRows

| mie | mig | mig

b | My | mbs | Mg

miy | ms | mig

miy | myy | mag [ mag mi | iy | mig | mi

m21 | Mg | Mg | Moy

l my | miy | mag | My

ms1 msa | mag| msg

Kq

Kia

My may | mag | mag mi | miy | mag | mig

e uses a 128 bit key to convert a plain text into a cypher
e 10 rounds of SubBytes, ShiftRows, MixColumns (until round
9), AddRoundKey



Soft Analytic Side Channel Attacks (SASCA)

MixColumns
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SASCA: loopy belief propagation to infer key ki, ko, k3, ka
surprisingly effective and state of the art!



Loopy Belief Propagation Recap

factor graphs: represents (unnormalized) distributions as [ [, f(X)

Exact on trees, but very limited guarantees on loopy graphs. .. 10



Exact SASCA with Circuits

e compile MixColumns to an SDD (structured decomposable)

e compile leakage distributions (256 states) to compatible
PSDDs

e apply circuit multiplication, yielding a “big” joint over all
variables

e infer key via tractable marginal query — this is still message

passing, but on a high-dimensional tree (exact) 4



Dirty Tricks

circuit multiplication is quadratic

9 circuits involved, so this didn't take off

thus, approximate the leakage distributions

1. assume conditional independence
changed the distributions too much, led to inferior performance
2. sparsify
many values close to zero; take states corresponding to 1 — ¢
of the mass, set the rest to zero, re-normalize

with simplified leakage distributions, we indeed could perform
exact inference
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Success Rate

Inference Method e=102]e=10"]e=10"%] =0
Baseline 79.35% | 79.57% | 79.59% | 79.59%
SASCA (3 BP iterations) 84.89% | 84.88% | 84.91% | 84.91%
SASCA (50 BP iterations) | 89.36% | 90.45% | 90.41% | 90.45%
SASCA (100 BP iterations) | 89.36% | 90.27% | 90.69% | 90.52%
PSDD + MAR 93.40% 97.81% | 98.02% N/A
PSDD + MPE 93.67% 99.42% | 99.93% N/A
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Towards DNA-based Storage

Funded by

Using DNA origamis as “compact disc” the European Union

Visual Detection System

(Neural Net) Error Correction

Neuro-Symbolic
Visual Detection System
+ Error Correction

Advantages: more reliable, parameter-efficient, data-efficient
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Continuous Generative Models and
Probabilistic Circuits




Inference in Generative Models

Among generative models, PCs have excellent inference properties:
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But, PCs usually have worse performance, in terms of

log-likelihood, sample quality, ...

One reason is the tractability-expressiveness dilemma

Another might be the “discrete nature” of PCs, while many
successful generative models can be seen as continuous mixtures
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Mixture Models

e discrete mixtures

latent variable interpretation

K

K
px) = > wicpi(x) = 3 p(z = i) plx| 2 = )

i=1

e e.g. Gaussian mixtures, PCs
e many tractable inference scenarios

e continuous mixtures

p(x) = / p(2) plx | 2) dz

VAEs, GANs, Flows, etc.
p(z) usually simple, e.g. white Gaussian
p(x| z) via neural net—continuity between x and z

usually intractable inference, due to high-dimensional integral
17



e Can we get best of both worlds?
e Continuous latent variables in PCs (“integral nodes”)?

e Also, can we still have tractable inference, please?

18



e Can we get best of both worlds?
e Continuous latent variables in PCs (“integral nodes”)?

e Also, can we still have tractable inference, please?

Arbitrary integrals are hard, but for low-dimensional z

p(x) = [ b(2) plx| 2)dz

becomes “morally tractable.” We might just apply good old
numerical integration, such as quadrature rules:

[ ple)px| 2)dz = 3wy plai) plx | 29)

The sum brings us back to circuit land!
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Continuous Mixtures of Tractable Probabilistic Models

Alvaro H.C. Correia'*, Gennaro Gala"*,
Erik Quaeghebeur!, Cassio de Campos', Robert Peharz'-?

e model distribution: p(x) = [ p(z) p(x|z)dz

e p(z) is a low-dimensional white Gaussian

e p(x|6(z)) is a PC, whose parameters  depend on z via a
neural net

e we used pretty simple PC structures, such as complete
factorized distributions and Chow-Liu trees
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Results on 20 Binary Datasets

Dataset

BestPC  em(Se)  em(Sar) LO(em(Sar)) | Dataset BestPC - em(Sg)  em(Sar) LO(em(Sar))
accid. -26.74 -33.27 -28.69 -28.81 | jester -52.46 -51.93 -51.94 -51.94
ad -16.07 -18.71 -14.76 -14.42 | kdd -2.12 -2.13 =212 -2.12
baudio -39.77 -39.02 -39.02 -39.04 | kosarek -10.60 -10.71 -10.56 -10.55
bbc -248.33  -240.19 -242.83 -242.79 | msnbc -6.03 -6.14 -6.05 -6.05
bnetflix -56.27 -55.49 -55.31 -55.36 | msweb -9.73 -9.68 -9.62 -9.60
book -33.83 -33.67 -33.75 -33.55 | nltcs -5.99 -5.99 -5.99 -5.99
c20ng -151.47  -148.24 -148.17 -148.28 | plants -12.54 -12.45 -12.26 -12.27
cr52 -83.35 -81.52 -81.17 -81.31 | pumbs -22.40 -27.67 -23.71 -23.70
cwebkb -151.84  -150.21 -147.77 -147.75 | tmovie -50.81 -48.69 -49.23 -49.29
dna -79.05 -95.64 -84.91 -84.58 | tretail -10.84 10.85 -10.82 -10.81
Avg. rank 2.85 2.65 1.85 175 |
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Figure 2: Samples from
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Probabilistic Integral Circuits (PICs)

Have many integral nodes in PCs, i.e. local continuous mixtures
(submitted).

p(Zy)  p(Z2|Zy) p(Z3|Zy) p(Zs|Z2)

with G. Gala, C. de Campos, A. Vergari, E. Quaeghebeur 2



PIC Overview
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Light-weight Energy-based Models

HCLT QuadPIC
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Results

QPC HCLT | Sp-PC  RAT IDF BitS BBans McB

MNIST 1.18 1.21 114 1.67 190 1.27 1.39 1.98
F-MNIST ~ 3.27 3.34 3.27 4.29 347 3.28 3.66 3.72
EMN-MN  1.66 1.70 1.52 2,56 2.07 1.88 2.04 2.19
EMN-LE 1.70 1.75 1.58 273 195 1.84 2.26 3.12
EMN-BA  1.73 1.78 1.60 2.78 215 1.96 2.23 2.88
EMN-BY 1.67 1.73 4 2,72 1.98 1.87 2.23 3.14

=
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Figure 5: QPCs systematically outperform PCs trained via EM or SGD. Table (left): Best average
test-set bpd for the MNIST-famility datasets. We compare against HCLT (Liu and Van den Broeck, 2021),
SparsePC (Dang et al., 2) RAT-SPN (Peharz et al., 2020), IDF (Hoogeboom et al., 2019), BitSwap (Kingma
et al., 2019), BBans (Townsend et al., 2019) and McBits (Ruan et al., 2021). QPC results are in bold if better
than HCLTSs, whereas global best results are underlined. QPC and HCLT results are averaged over 5 different
runs; the other results are taken from Dang et al. (2022). Scatter plot (right): bpd results for QPCs (y-axis) and
HCLTs (x-axis) paired by B-N hyperparameter configuration and (min-max) normalized for every MNIST-family
dataset. A similar trend occurs for binomial input units (cf. Appendix B).
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Compatible vtrees
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