Probabilistic Circuits

Robert Peharz
Graz University of Technology

Generative Modeling Summer School
Copenhagen, 29t" June 2023

Generative Modeling in a Nutshell

Model Distribution Py, pg True Distribution P*, p*

- -

Q

Why Probability?

1. Generative models are about “generating new data” —it's
hard to do that without probability or randomness

2. Probability is a consistent and optimal tool for reasoning
under uncertainty

Reasoning under Uncertainty

Cat vs. Dog classifier

If you know the true distribution
p*(X,Y) producing i.i.d. samples of
x (image) and y (label), the Bayes
optimal classifier is

§ = argmaxp*(y | x) = arg max p*(y, x)
y y

No classifier has a higher accuracy.

Reasoning under Uncertainty

Regression

Say you want to predict Y 0
from X, and you know the >
true distribution p*(Y,X)
producing i.i.d. samples of -4
X, Y.

-6

Reasoning under Uncertainty

You might compute the
conditional distribution

. p*(Y,x) ’
y|x)= 21X
P (|) p*(X) > ,
——"
=/ p*(xy)dy

for all values of x.

Reasoning under Uncertainty

Then you can construct the

true regression function 2
f(X) = Ep*(y‘x)[Y‘X] 0
>
which is just the expectation .
of Y given x .
No function has lower Sl

squared loss.

Reasoning under Uncertainty

Of course, that Y is output

and X is input was arbitrary, 2
so the whole “trick” works /
also in the other direction: ’
X T
‘ Py, X N
pP(Xly)=—7+—
P (y) "
S~—~— \
=/ p*(xy)dx .
-1 0 1 2 3 4 5 6 7
X

Reasoning under Uncertainty

Of course, that Y is output 2
and X is input was arbitrary,
so the whole “trick” works
also in the other direction: 2

f(y) = Ep x|)X Y] -

-6

Probability = consistent and optimal reasoning under uncertainty

“Probability is nothing but common sense reduced to
computation.”
—P.S. Laplace

“Probabilistic reasoning is about halfway to Al."

—R. Peharz

see a/so @urll Saqrn%, (ox T oYem

Inference Routines

Joint probability distribution ~ knowledge base + uncertainty

There are many inference routines which might be applied (and

combined) to answer queries from your joint:

sampling

density, likelihood
marginalization
conditioning
expectations
maximization (MAP)

x ~ p(X)

p(x)

p(X) = [p(X,y)dy (> in discrete case)
p(Y %) = 255

E,ox)[f(X)] (e.g. moments)

arg maxy p(x)

Inference Routines

Joint probability distribution ~ knowledge base + uncertainty

There are many inference routines which might be applied (and

combined) to answer queries from your joint:

sampling x ~ p(X)

density, likelihood p(x)

marginalization p(X) = [p(X,y)dy (> in discrete case)
conditioning p(Y |x)= %

expectations E,ox)[f(X)] (e.g. moments)

maximization (MAP) arg maxx p(x)

Can your generative model do this?

Inference Routines

For which model class and inference routine does there exist an
exact and efficient algorithm?

GANs VAEs EBMs Flows ARMs PCs

sampling
density
marginals
condition
moments

max (MAP)

XXX X XX
XXX X XX
XXX X XX
XXXX XL L
XXXX XL L
CLLLLKLKKL

E

PCs can do all these amazing things. Where's the catch?

e still many interesting queries which are intractable in PCs
e tractability-vs-expressivity dilemma

e expressive models are less tractable

e tractable models are less expressive
e however, don’t jump to conclusion!

e tractable models get you surprisingly far

e we have by far not reached their true potential

e ultimately, it's the right mix of methods for the win

Probabilistic Circuits: Definitions

What are Probabilistic Circuits?

e probabilistic circuits (PCs): special type of neural network
e they represent a density pg(X) for given random variables X
e basic mode of operation: “sample x in, pg(x) out”

e inference routines (marginals, conditionals, etc.) are
computed via “modified” network passes

e in practice, implemented in the log-domain (log pg(x))

Three Types of Units

@ distribution node, input node, leaf

@ sum node, mixture
@ product node, factorization

10

Distribution Node, Input Node, Leaf

e a distribution node, input node, leaf L is some “simple”
tractable distribution function, e.g. Gaussian, Categorical, etc.

X p(x)

e input: sample x
e output: p(x), density evaluated at x
e density as special case of “non-linear activation function”

e Important: a leaf is usually a distribution over only a subset
of all variables, denoted as scope sc(L)

e the scope as like a "receptive field” in neural nets

11

Gaussian Leaves

Vi1 ViD
Parameters p = (p1,...,p), X =

VD1 coo VDD

All kinds of tractable inference routines: '

e sampling: via eigen decomposition of ¥
e density: p(x) = \/ﬁ exp (—2(x —)T Hx — p))
e marginals: simply discard rows/columns from g and ©
e conditionals: fige = pg + LgeX oo (Xe — pe)
Ygle =2gq+ NS e N
e mean, (co)variance: p, *

e max: [

12

Sum Node, Mixture

e let p1, po, ..., px be
components, i.e. distributions

over the same scope

e let wi, wy, ..., wk be weights
with wye >0, >, wx =1

e a sum node, mixture S
computes the distribution

p(X) =" wi pi(X)
p

e for any pi, ..., pk, the mixture p
is a proper distribution

13

Mixtures inherit tractability!

e assume p1,..., Pk have tractable marginals and conditionals

e then also the mixture distribution is tractable

e Marginals: assume we want to marginalize X;

(X\l - /Zwk Pk X\/7X/)dxl
= Z Wk/Pk(X\hXi) dx; = Z wi pi(X\7)
PR "

tractable

e of course, this also works with many variables

e “marginal of mixture = mixture of component marginals”

14

Mixtures inherit tractability! Cont’'d

e Conditionals: say we want to compute p(X, | xe)

p(xq | Xe) X p(xqa Xe) = Z Wi Pk(quxe)
k

unnormalized weight

/—/%
—Z Wi Pk Xe) Pk(q’xe)
—_————

tractable, normalized

Wi pi(Xe)
 wip(xe)

q’xe ZWkPk q‘xe)

e hence, by setting wy = we get

" o 0 A 0 P "
e ‘“conditional of mixture = mixture of component conditionals

ii5)

Mixtures inherit tractability! Cont’'d

e Maximization: in general intractable in mixture models, even

if components allow tractable maximization. ..

e however, if the supports of the components don't overlap,
maximization becomes tractable

e specifically, if for each x we have that at most one px(x) > 0,

we say the mixture is deterministic
e then, we can write

deterministic sum tractable

~=
maxz wi pr(x) = max ‘max wy pr(x) = max wy max pg(x)
X P X k k X

e we can also keep track of the arg max

e “max of mixture = mixture of component max”

16

Mixtures inherit tractability! Cont’'d

e Sampling: a mixture model can be seen as a latent variable
model, involving a marginalized latent variable Z

Wik

p(X) = p(Z=k) p(X|Z=k)=> " p(Z=kX)

k k

e Sampling can be done in two stages:
e sample Z ~ Categorical(wy, . .., wk)
e sample from selected component x ~ pz

e ‘“sample of mixture = selecting among component samples”

17

Mixtures inherit tractability! Cont’'d

Inference in mixtures reduces to inference at components!

18

Product Node, Factorization

e let p(X1), p(X2), ..., p(Xk) be
distributions over disjoint sets of
variables X1, X, ..., Xk

e a product node P computes the

distribution @
e p(x1, @2, ..y Tr)

p(X1,..., Xk) =[] p(Xx)
K

e that is, a product node is simply
a factorized distribution over

{X1,..., Xk}

19

Factorizations inherit tractability!

let p(X1),...,p(Xk) have tractable marginals and
conditionals
then also the factorized distribution is tractable

e Marginals: assume we want to marginalize X;
e since X1, Xo, ..., Xk are disjoint, X; only appears in one set,

say X;

X\l _/ Hp Xk _[\I7XI)dXI

k#j
tractable
—_——
HP X&) / Xi\i» Xi) dxi

k#i
of course, marginalization also works with many variables
“marginal of product = product of marginals”
20

Factorizations inherit tractability! cont’'d

e Conditionals: say we want to compute p(X, | xe)
o let qu = Xq N X and Xg = Xe N Xy

P(Xg; xe) TIx P(Xqk, Xek) = Hp(qu | Xek)

P(Xq | xe) = p(xe) Ty p(xex) k

e ‘conditionals of product = product of conditionals”

21

Factorizations inherit tractability! cont’'d

e Maximization:
max Hp(xk) = H max p(xk)
k k

e arg max of a product is simply the concatenation of the
arg max'es of the individual factors

e “max of product = product of max”

Sampling:

just independently sample factors

e “sampling of product = concatenate samples of factors”

22

Factorizations inherit tractability! Cont’d

Inference in factorizations reduces to inference at factors!

23

Three Types of Units

@ distribution node tractable inference by default

inference reduces to inference in
sum node

components

inference reduces to inference in
product node

factors

e probabilistic circuits (PCs) are networks of these units
e by induction, all nodes are a distribution over their scope

e inference reduces to inference at the leaves!

24

Smoothness and Decomposability

Leaves are distributions (L), internal
nodes are sums (S) or products (P).

A PC is smooth, if for all sum nodes
it holds, that all input nodes are over
same scope—that just means that
all sums are proper mixtures.

A PC is decomposable, if for all
product nodes it holds, that all input
nodes have disjoint scope—that just
means that all products are proper
factorizations.

25

Inference in PCs

e the inference “tricks” for mixtures and products recursively
apply to PCs

e ultimately, inference in PCs reduces to inference at the leaves
(plus some modifications of parameters/structures)

e think of this as a neural network with “many modes of
operation”

e smoothness and decomposability enable tractable
marginalization and conditioning

e determinism enables tractable maximization

e there are more interesting constraints and corresponding
inference routines

26

Marginalization

Assume we want to
marginalize a variable M,
which is contained in U

27

Marginalization

27

Marginalization

27

Marginalization

Due to decomposability, M
appears only in one child of
each product node

27

Marginalization

27

Marginalization

Reduces to marginalization
at leaves + standard

forward pass!

Special case U = {M}:
marginalization at leaf
delivers constant 1

27

Learning PCs

PCs are between neural nets and probabilistic graphical models

learning techniques are carry over from these approaches
Parameters:
e closed form maximum likelihood (deterministic PCs)

e gradient based maximum likelihood
e expectation-maximization
Peharz et al. “On the latent variable interpretation in Sum-Product Networks"
e Bayesian
Structure:
e compile from other models (e.g. Bayesian networks)

¢ Poon & Domingos, “Sum-Product Networks: A New Deep Architecture”
e hand-designed inductive bias (cf. convolutions)
Darwiche, “A Differential Approach to Inference in Bayesian Networks”
e structure learning
e top-down clustering
e decision tree learning

Selected Recent Work

Einsum Networks: Fast and Scalable Learning of
Tractable Probabilistic Circuits

Robert Peharz' Steven Lang? Antonio Vergari’® Karl Stelzner> Alejandro Molina> Martin Trapp*
Guy Van den Broeck® Kristian Kersting? Zoubin Ghahramani*

Abstract
Probabilistic ts (PCs) are a promising av-
enue for probabilistic modeling, as they permit a
wide range of exact and efficient inference rou-
tines. Recent “deep-learning-style” implementa-
tions of PCs strive for a better scalability. but are
still difficult to train on real-world data, due to
their sparsely connected computational graphs. In
this paper, we propose Einsum Networks (EiNets),
anovel implementation design for PCs, improving
prior art in several regards. At their core, EiNets
combine a large number of arithmetic operations
in a single monolithic einsum-operation, leading
1o speedups and memory s: s of up to two
orders of magnitude, in comparison to previous

we show that the implementation of Expectation-
Maximization (EM) can be simplified for PCs.
by leveraging automatic differentiation. Further-
more, we demonstrate that EiNets scale well to
datasets which were previously out of reach, such
as SVHN and CelebA, and that they can be used
as faithful generative image models.

1. Introduction

The central goal of probabilistic modeling is to approxi-
mate the data-generating distribution, in order to answer
statistical queries by means of probabilistic inference. In
recent vears manv navel nrohahilictic madels hased on deen

etal,, 2019), Autoregressive Models (ARMs) (Larochelle &
Murray. 2011: Uria et al.. 2016). and Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014). While all
these models have achieved impressive results on large-scale
datasets, ic. they have been successful in terms of represen-
tational power and learning, they unfortunately fall short
in terms of inference, a main aspect of probabilistic model-
ing and reasoning (Pearl, 1988; Koller & Friedman, 2009).
All of the mentioned models allow to draw unbiased sam-
ples, enabling inference via Monte Carlo estimation. This
strategy, however, becomes quickly unreliable and computa-
tional expensive for all but the simplest inference queries.
Also other approximate inference techniques, ¢.g. varia-
tional inference, are often biased and their inference quality
might be hard to analyse. Besides sampling, only ARMs
and Flows support efficient evaluation of the probability
density for a given sample, which can be used. e.g., for
model comparison and outlier detection.

However, even for ARMs and Flows the following in-
ference task is computationally hard: Consider a den-

sity p(X1..... Xx) over N random variables, where N
might be just in the order of a few dozens. For example.
Xy..... Xy might represent medical measurements of a

particular person drawn from the general population mod-
eled by p(X;.). Now assume that we split the vari-
ables into three disjoint sets X, X,,,. and X, of roughly

the same size, and that we wish to compute

Py X, Xe)dx),

T ooy ey,

Plxg|xc) =

https://github.com/cambridge-mlg/EinsumNetworks

ICML"20

Einsum Networks (EiNets)

e PCs used to be slow, even on Tensorflow, PyTorch, etc.

e reason: sparse and cluttered computational graph, yielding
many small calls to GPU kernels

e idea: summarize many sum-product operations in one layer

s S = W vec(P)
mmmnn]
P
) NE P NoN @/@@
® @ EENAN &) @@@
N N’ N Ni Nj=N, Nj=N; N, N; N

e all nodes on same level computed with a single GPU call:
einsum(’bip,bjp,ijop -> bop’, leftx, rightx,

params)

30

Einsum Networks — Runtime and Memory

K
40
10t EiNets (x) *
o SPFlow (+) o "
G) @ LibSPN (%) RS
~— *
30 ~ 100 .
2 ¥
o x X + *
& i .
20 E 10-1)
o)
o s
(O] +*
10
1072 :
0 100 101
0 Training time (sec/epoch)

e runtime and memory comparison on random structures

e model sizes range from 10k-10M

e improvements of 1-2 orders of magnitude

e PCs now similarly efficient as DNNs 31

Einsum Networks as Image Models

—_~E =
L N LS]

|

N]

=
-
pr—

A" &
. |
=

I
L) |
1
,
eal ir ﬂges

(d) Real CelebA samples. (e) EiNet CelebA samples. (f) Real images (top), covered images, and EiNet reconstructions

32

Einsum Networks for Qutlier Detection

MNIST
SEMEION
SVHN
Vi
Ol
—~12000 —~10000 8000 —6000 —4000 2000 0
log p(x)

Figure 6. Histograms of sample-wise log-probabilities of the test
sets of MNIST, SEMEION and SVHN, under EiNet trained on
MNIST training data. Note that the histograms do not overlap.

33

Faster Attend-Infer-Repeat with Tractable Probabilistic Models

Karl Stelzner ! Robert Peharz? Kristian Kersting '

Abstract

The recent attend-infer-repeat (AIR) framework
marks a milestone in Bayesian scene understand-
ing and in the promising avenue of structured
probabilistic modeling. The AIR model expresses
the composition of visual scenes from individ-

rendering process.

Recently, deep neural generative models such as variational
autoencoders (VAEs) (Kingma & Welling, 2014) and gen-
erative adversarial networks (GANs) (Goodfellow et al.,
2014) have shown remarkable success in generative image
modeling. However, since their basic variants deliver rather

Tatent several structured latent

ual objects, and uses variational

tractable, which hampers its learning speed and
makes it prone to sub-optimal solutions. In this
paper, we show that inference and learning in
AIR can be considerably accelerated by replac-
ing the intractable object representations with
tractable probabilistic models. In particular, we
opt for sum-product (SP) networks, an expres-
sive deep probabilistic model with a rich set
of tractable inference routines. As our empiri-
cal evidence shows, the resulting model, called
SPAIR, achieves a higher object detection accu-
racy than the original AIR system, while reduc-
ing the learning time by an order of magnitude.
Moreover, SPAIR allows one to treat object oc-
clusions in a consistent manner and to include a
background noise model, improving the robust-
ness of Bayesian scene understanding.

variable models based on VAEs have been proposed. A par-
ticularly successful model is arrend-infer-repeat (ATR) (Es-
lami et al., 2016), which incorporates VAEs as object models
within a scene generation process and learns a recurrent neu-
ral network (RNN) to dynamically detect multiple objects
composed in a scene. Other examples of structured models
are (Johnson et al., 2016), which incorporate VAEs into a
latent switching linear dynamical system to infer behavioral
patterns from mice depth videos, and SketchRNN (Ha &
Eck, 2018), which uses an RNN to infer the trajectory of a
pen from given sketches.

None of these models require supervision in the form of
observed latent representations. Instead, the nature of these
representations is specified through the model structure.
To this end, available prior knowledge is encoded in the
structure, such as the rules of object interaction, pen stroke
rendering, or Markovian assumptions of biological behavior.
Other parts such as the appearance of objects or typical
pen trajectories are subject to learning. Exact inference is

https://github.com/stelzner/supair

[ICML'19]
34

Attend-Infer-Repeat — Vision as Inverse Graphics

scene description

object position, object presence,
object content

scene

image

85

Attend-Infer-Repeat — Vision as Inverse Graphics

scene description

object position, object presence,
object content

RNN

variational inference,
inverse problem

scene

image

o Attend-Infer-Repeat (AIR) based on variational inference
over thousands of variables (scene parameters, pixels, latent
codes)

e we replaced the vision models with PCs and “collapsed them
out” of the posterior, leaving a posterior over only a few
dozens of latent variables (scene parameters)

e hybrid between PCs and variational inference
35

Learning Speed and Stability

count accuracy

Multi-MNIST
1.00
0.75 A
0.50 4
0.251 —— SPAIR
AR
0.00

100 200 300

time (s)

count accuracy

by
o
S

o
N
%

o
U0
S)

o
N
[y

o
o
IS

Sprites

- SPAIR
— AIR

25 50 75
time (s)

count accuracy

Noisy MNIST

1.00

0.751

0.501

0.25 1 —— SPAR

e AIR

0.00 T T
200 400
time (s)

36

Background and Reconstructions

igi 4 3 ¢ d
original
ERENEEERN
- AR R
SPAIR @ = i 5
- R
SPAIR q
recon- 3 | [Chd
struction (v]
AIR TRE L iR
- EREDEEED
AIR e
- R EEEEE

37

More Hybrids. . .

e Tan and Peharz, “Hierarchical Decompositional Mixtures
of Variational Autoencoders”

e PCs with VAE leaves

e main insight: PCs can incorporate noisy ELBOs in a
meaningful way

e VAE leaves are over few dimensions — "“easier inference
problem”

e delivered higher likelihoods than vanilla VAEs

OO 06 - OO

https://github.com/cambridge-mlg/SPVAE ICML'19 s

More Hybrids. . .

e Trapp, et al., “Deep Structured Mixtures of Gaussian
Processes”

e PCs over K Gaussian process experts
e well defined mixture of GPs with exact inference
e reduces cubic inference cost of GPs by divide-and-conquer

approach

https://github.com/trappmartin/DeepStructuredMixtures
AISTATS'20 39

Continuous Mixtures of Tractable Probabilistic Models

Alvaro H.C. Correia'*

, Gennaro Gala'",

Erik Quaeghebeur', Cassio de Campos', Robert Peharz'
! Eindhoven University of Technology
2 Graz University of Technology
{a.h.chaim.correia, g.gala, e.quaeghebeur, c.decampos, r.peharz} @tue.nl

Abstract

thahxlmlc modeh based on continuous latent spaces, such
as v ders, can be as

Some s ssful recent ples of bl

are variational autoencoders (VAEs) (Kingma and Welling
[2014), generative ad»cnanal networks (GANs) (Goodfelloy
et al.[2014), and Flows (Rezende and

mixture models where depend i y on
the latent code. They hn\e pmven to be expressive tools for
and lling, but are at odds with
tractable probubl istic inference. lhal is, Lompuung mamlnalq
and i of the
Meanwhile, tractable probabilistic models such as probabilis-
tic circuits (PCs) can be understood as hierarchical discrete
mixture models, and thus are capable of performing exact
mference efﬁclemly but oflen show subpar performance in
to space models. In this paper,
we investigate a hybrid appronch namely continuous mixtures
of tractable models with a small latent dimension. While these
models are analytically intractable, they are well amenable
to numerical integration schemes based on a finite set of in-
tegration points. With a large enough number of integration
points the approximation becomes de-facto exact. Moreover,
for a finite set of integration points, the integration method ef-
fectively compiles the continuous mixture into a standard PC.
In experiments, we show that this simple scheme proves re-
markably effective, as PCs learnt this way set new state of the
art for tractable models on many standard density estimation
benchmarks.

https://github.com/AlCorreia/cm-tpm

2015). All lhree of these models use a simple prior p(z)

e.g. an isotropic Gaussian, and represent the mixture com-
ponents with a neural network. In the case of VAEs, the
mixture component is a proper density p(x | z) with respect
to the Lebesgue measure, represented by the so-called de-
coder, while for GANs and Flows the mixture component is
a point measure, i.e. a deterministic function x = j(zﬂ The
use of continuous neural networks topologically relates the
latent space and the observable space with each other, so that
these models can be described as continuous mixture models.
The use of continuous mixtures allows, to a certain extent,
the interpretation of Z as a (latent) embedding of X, but also
seems to benefit generalisation, i.e. to faithfully approximate
real-world distributions with limited training data.

However, while continuous mixture models have achieved
impressive results in density estimation and generative mod-
elling, their ability to support probabilistic inference remains
limited. Nolably the key inference routines of margmalnu-
tion and conditioning, which together form a
soning process QGhahmmam]ZOISHJaynes][ZOOSD are largely

AAAI'22

Discrete vs. Continuous Mixtures

Discrete Mixture Continuous Mixture

—
p(x) =232, pP(Z = k) p(x|Z = k) = [p(2)

p(x|z)d

e most well known continuous mixture model: VAEs
e trouble of continuous mixtures: solving the integral over Z.

e VAEs address this with a variational approach/the ELBO

41

Continuous Mixtures of PCs

From standard PCs. ..

42

Continuous Mixtures of PCs

...to continuous PCs mixtures

42

Numerical Integration

e high-dimensional integrals are hard
e however, if we restrict the dimensionality of Z, we can use
numerical integration techniques such as
e (randomized quasi) Monte Carlo
e quadrature rules
e sparse grids
e all these numerical integration techniques approximate the
integral with a finite mixture:

K

p(x)~) w(z)p(x|z)
k=1

e This is again a PC!

e Thus, this can be seen as a new way to train PCs

43

Results

Dataset BestPC cm(SF) cem(Scir) LO(em(Scir)) | Dataset BestPC cm(Sf) cem(Scr) LO(em(Scur))
accid. -26.74 -33.27 -28.69 -28.81 | jester -52.46 -51.93 -51.94
ad -16.07 -18.71 -14.76 -14.42 | kdd -2.12 -2.13 -2.12
baudio -39.77 -39.02 -39.02 -39.04 | kosarek -10.60 -10.71 -10.55
bbc -248.33 -240.19 -242.83 -24279 | msnbc -6.03 -6.14 -6.05
bnetflix -56.27 -55.49 -55.31 -55.36 | msweb -9.73 -9.68 -9.60
book -33.83 -33.67 -33.75 -33.55 | nltcs -5.99 -5.99 -5.99
c20ng -151.47 -148.24 -148.17 -148.28 | plants -12.54 -12.45 -12.27
cr52 -83.35 -81.52 -81.17 -81.31 | pumbs -22.40 -27.67 -23.70
cwebkb -151.84 -150.21 -147.77 -147.75 | tmovie -50.81 -48.69 -49.29
dna -79.05 -95.64 -84.91 -84.58 | tretail -10.84 10.85 -10.81
Avg. rank 2.85 2.65 1.85 175 |

7
Zra
B &

T
FL R

or At ¥

" =Y

44

Semantic Probabilistic Layers
for Neuro-Symbolic Learning

Kareem Ahmed Stefano Teso Kai-Wei Chang
CS Department CIMeC and DISI CS Department
UCLA University of Trento UCLA
ahmedk@cs.ucla.edu stefano.teso@unitn.it kwchang@cs.ucla.edu
Guy Van den Broeck Antonio Vergari
CS Department School of Informatics
UCLA University of Edinburgh
guyvdb@cs.ucla.edu avergariQed.ac.uk
Abstract

‘We design a predictive layer for structured-output prediction (SOP) that can be
plugged into any neural network zuaranteemv its predictions are consistent with a
set of predefined symbolic cc . Our S ic Probabilistic Layer (SPL)
can model intricate correlations, and h1rd constraints, over a structured output
space all while being amenable to end-to-end learning via maximum likelihood.
SPLs combine exact probabilistic inference with logical reasoning in a clean
and modular way, learning complex distributions and restricting their support to
solutions of the constraint. As such, they can faithfully, and efficiently, model
complex SOP tasks beyond the reach of alternative neuro-symbolic approaches.
‘We empirically demonstrate that SPLs ou[pcrtorm these competitors in terms of

accuracy on challenging SOP tasks including hical multi-label classification,
pathfinding and preference learning, while retaining perfect constraint satisfaction.
Our code is made publicly available on Github at github.com/Kareem Yousrii/SPL.

https://github.com/KareemYousrii/SPL NeurlPS'22

httr

& Pinned Tweet

‘i&

antonio vergari 3Zhiring PhD students 3¢ @tetraduzione - Jun 2

| have fully-funded PhD positions (3.5 yrs) for troublemakers in #ML #Al
who want to design the next gen of #probabilistic #models and #programs
that are provably #reliable and #efficient

Join @InfAtEd @EdinburghUni

Email me! ».<
Please share!

Apply ¢ nolovedeeplearning.com/buysellexchang...

IPS'22

45

Structured Output

GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)

FIL Lsi SPL

GROUND TRUTH

46

Semantic Probabilistic Layer

z~9-0 X>=rer— = pylx)
X

o B
Y SPL

e |ogical world knowledge encoded in logic circuit ¢

e unconstrained probability distribution g: PC parametrized by
neural net

e with structured decomposability (stricter version of
decomposability) one can multiply ¢ and g, yielding a new PC
of polynomial (quadratic) size

e this yields a predictive p(y | x) obeying logical constraints! 47

Advertisement 1

European
Innovation
Council

TU

Grazm

e improving maturity level of DNA storage
e 1 PhD position for probabilistic-symbolic ML (with me)
e 1 PhD position for computer vision (with Thomas Pock)

48

Advertisement 2

European
Innovation
Council

TU

Grazm

Fig.| Schematic overview on the Al

based battery approach

e developing sustainable Large-scale Organic Batteries

e 2 PhD positions for probabilistic ML, Bayesian optimization,
Al4Science (with me and Roman Kern)

robert.peharz@tugraz.at

49

Reading:

e Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Models

e Foundations of Sum-Product Networks for Probabilistic
Reasoning

Tutorials:

e NeurlPS'22 Tutorial (video)
¢ ECML/PKDD’'20 Tutorial (video)
e AAAI'20 Tutorial (slides)

50

