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Generative Modeling in a Nutshell
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Why Probability?

1. Generative models are about “generating new data”—it’s

hard to do that without probability or randomness

2. Probability is a consistent and optimal tool for reasoning

under uncertainty
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Reasoning under Uncertainty Example

Cat vs. Dog classifier

If you know the true distribution

p⇤(X ,Y ) producing i.i.d. samples of

x (image) and y (label), the Bayes

optimal classifier is

ŷ = argmax
y

p⇤(y | x) = argmax
y

p⇤(y , x)

No classifier has a higher accuracy.
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Reasoning under Uncertainty Example

Regression

Say you want to predict Y

from X , and you know the

true distribution p⇤(Y ,X )

producing i.i.d. samples of

X ,Y .
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Reasoning under Uncertainty Example

You might compute the

conditional distribution

p⇤(Y | x) = p⇤(Y , x)

p⇤(x)| {z }
=
R
p⇤(x ,y) dy

for all values of x .
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Reasoning under Uncertainty Example

Then you can construct the

true regression function

f (x) := Ep⇤(Y | x)[Y | x ]

which is just the expectation

of Y given x

No function has lower

squared loss.
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Reasoning under Uncertainty Example

Of course, that Y is output

and X is input was arbitrary,

so the whole “trick” works

also in the other direction:

p⇤(X | y) = p⇤(y ,X )

p⇤(y)| {z }
=
R
p⇤(x ,y) dx
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Probability = consistent and optimal reasoning under uncertainty

“Probability is nothing but common sense reduced to

computation.”

—P.S. Laplace

“Probabilistic reasoning is about halfway to AI.”

—R. Peharz
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see also Pearl, Jaynes, Cox Theorem



Inference Routines

Joint probability distribution ⇡ knowledge base + uncertainty

There are many inference routines which might be applied (and

combined) to answer queries from your joint:

sampling x ⇠ p(X )

density, likelihood p(x)
marginalization p(X ) =

R
p(X , y) dy (

P
in discrete case)

conditioning p(Y | x) = p(x ,Y )

p(x)
expectations Ep(X )[f (X )] (e.g. moments)

maximization (MAP) argmaxx p(x)

Can your generative model do this?
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Inference Routines

For which model class and inference routine does there exist an

exact and e�cient algorithm?

GANs VAEs EBMs Flows ARMs PCs

sampling

density

marginals

condition

moments

max (MAP) ( )

E ( )
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PCs can do all these amazing things. Where’s the catch?

• still many interesting queries which are intractable in PCs

• tractability-vs-expressivity dilemma

• expressive models are less tractable

• tractable models are less expressive

• however, don’t jump to conclusion!

• tractable models get you surprisingly far

• we have by far not reached their true potential

• ultimately, it’s the right mix of methods for the win
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Probabilistic Circuits: Definitions



What are Probabilistic Circuits?

• probabilistic circuits (PCs): special type of neural network

• they represent a density p✓(X ) for given random variables X

• basic mode of operation: “sample x in, p✓(x) out”

• inference routines (marginals, conditionals, etc.) are

computed via “modified” network passes

• in practice, implemented in the log-domain (log p✓(x))
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Three Types of Units

distribution node, input node, leaf

sum node, mixture

product node, factorization
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Distribution Node, Input Node, Leaf Definition

• a distribution node, input node, leaf L is some “simple”

tractable distribution function, e.g. Gaussian, Categorical, etc.

• input: sample x

• output: p(x), density evaluated at x

• density as special case of “non-linear activation function”

• Important: a leaf is usually a distribution over only a subset

of all variables, denoted as scope sc(L)

• the scope as like a “receptive field” in neural nets
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Gaussian Leaves Example

Parameters µ = (µ1, . . . , µD), ⌃ =

0

B@
v11 . . . v1D
.
.
.

. . .
.
.
.

vD1 . . . vDD

1

CA

All kinds of tractable inference routines:

• sampling: via eigen decomposition of ⌃

• density: p(x) = 1p
(2⇡)D |⌃|

exp
�
�1

2
(x � µ)T⌃�1

(x � µ)
�

• marginals: simply discard rows/columns from µ and ⌃

• conditionals: µq|e = µq + ⌃qe⌃
�1
ee (xe � µe)

⌃q|e = ⌃qq + ⌃qe⌃
�1
ee ⌃eq

• mean, (co)variance: µ, ⌃

• max: µ
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Sum Node, Mixture Definition

• let p1, p2, . . . , pK be

components, i.e. distributions

over the same scope

• let w1, w2, . . . , wK be weights

with wk � 0,
P

k wk = 1

• a sum node, mixture S

computes the distribution

p(X ) =

X

k

wk pk(X )

• for any p1, . . . , pK , the mixture p

is a proper distribution
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Mixtures inherit tractability!

• assume p1, . . . , pK have tractable marginals and conditionals

• then also the mixture distribution is tractable

• Marginals: assume we want to marginalize Xi

p(X\i ) =

Z X

k

wk pk(X\i , xi ) dxi

=

X

k

wk

Z
pk(X\i , xi ) dxi

| {z }
tractable

=

X

k

wk pk(X\i )

• of course, this also works with many variables

• “marginal of mixture = mixture of component marginals”
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Mixtures inherit tractability! Cont’d

• Conditionals: say we want to compute p(Xq | xe)

p(Xq | xe) / p(Xq, xe) =
X

k

wk pk(Xq, xe)

=

X

k

unnormalized weightz }| {
wkpk(xe) pk(Xq | xe)| {z }

tractable, normalized

• hence, by setting w̃k =
wkpk (xe)P
l wl pl (xe) we get

p(Xq | xe) =
X

k

w̃k pk(Xq | xe)

• “conditional of mixture , mixture of component conditionals”
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Mixtures inherit tractability! Cont’d

• Maximization: in general intractable in mixture models, even

if components allow tractable maximization. . .

• however, if the supports of the components don’t overlap,

maximization becomes tractable

• specifically, if for each x we have that at most one pk(x) > 0,

we say the mixture is deterministic

• then, we can write

max
x

X

k

wk pk(x) = max
x

deterministic sumz}|{
max
k

wk pk(x) = max
k

wk

tractablez }| {
max

x
pk(x)

• we can also keep track of the argmax

• “max of mixture = mixture of component max”
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Mixtures inherit tractability! Cont’d

• Sampling: a mixture model can be seen as a latent variable

model, involving a marginalized latent variable Z

p(X ) =

X

k

wkz }| {
p(Z = k) p(X |Z = k) =

X

k

p(Z = k ,X )

• Sampling can be done in two stages:

• sample Z ⇠ Categorical(w1, . . . ,wK )

• sample from selected component x ⇠ pZ

• “sample of mixture = selecting among component samples”
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Mixtures inherit tractability! Cont’d

Inference in mixtures reduces to inference at components!
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Product Node, Factorization Definition

• let p(X1), p(X2), . . . , p(XK ) be

distributions over disjoint sets of

variables X1,X2, . . . ,XK

• a product node P computes the

distribution

p(X1, . . . ,XK ) =
Y

k

p(Xk)

• that is, a product node is simply

a factorized distribution over

{X1, . . . ,XK}
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Factorizations inherit tractability!

• let p(X1), . . . , p(XK ) have tractable marginals and

conditionals

• then also the factorized distribution is tractable

• Marginals: assume we want to marginalize Xi

• since X1,X2, . . . ,XK are disjoint, Xi only appears in one set,

say Xj

p(X\i ) =

Z 0

@
Y

k 6=j

p(Xk)

1

A p(Xj\i , xi ) dxi

=

0

@
Y

k 6=i

p(Xk)

1

A

tractablez }| {Z
p(Xj\i , xi ) dxi

• of course, marginalization also works with many variables

• “marginal of product = product of marginals”
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Factorizations inherit tractability! cont’d

• Conditionals: say we want to compute p(Xq | xe)
• let Xqk = Xq \ Xk and Xek = Xe \ Xk

p(Xq | xe) =
p(Xq, xe)
p(xe)

=

Q
k p(Xqk , xek)Q

k p(xek)
=

Y

k

p(Xqk | xek)

• “conditionals of product = product of conditionals”
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Factorizations inherit tractability! cont’d

• Maximization:

max
x

Y

k

p(xk) =
Y

k

max
xk

p(xk)

• argmax of a product is simply the concatenation of the

argmax’es of the individual factors

• “max of product = product of max”

• Sampling:

• just independently sample factors

• “sampling of product = concatenate samples of factors”
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Factorizations inherit tractability! Cont’d

Inference in factorizations reduces to inference at factors!
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Three Types of Units

distribution node tractable inference by default

sum node
inference reduces to inference in

components

product node
inference reduces to inference in

factors

• probabilistic circuits (PCs) are networks of these units

• by induction, all nodes are a distribution over their scope

• inference reduces to inference at the leaves!
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Smoothness and Decomposability Definition

Leaves are distributions (L), internal

nodes are sums (S) or products (P).

A PC is smooth, if for all sum nodes

it holds, that all input nodes are over

same scope—that just means that

all sums are proper mixtures.

A PC is decomposable, if for all

product nodes it holds, that all input

nodes have disjoint scope—that just

means that all products are proper

factorizations.
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Inference in PCs

• the inference “tricks” for mixtures and products recursively

apply to PCs

• ultimately, inference in PCs reduces to inference at the leaves

(plus some modifications of parameters/structures)

• think of this as a neural network with “many modes of

operation”

• smoothness and decomposability enable tractable

marginalization and conditioning

• determinism enables tractable maximization

• there are more interesting constraints and corresponding

inference routines
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Marginalization Example

27

Assume we want to

marginalize a variable M,

which is contained in U



Marginalization Example
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Marginalization Example
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Marginalization Example

27

Due to decomposability, M

appears only in one child of

each product node



Marginalization Example
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Marginalization Example

27

Reduces to marginalization

at leaves + standard

forward pass!

Special case U = {M}:
marginalization at leaf

delivers constant 1



Learning PCs

• PCs are between neural nets and probabilistic graphical models

• learning techniques are carry over from these approaches

• Parameters:
• closed form maximum likelihood (deterministic PCs)

• gradient based maximum likelihood

• expectation-maximization

Peharz et al. “On the latent variable interpretation in Sum-Product Networks”

• Bayesian

• Structure:
• compile from other models (e.g. Bayesian networks)

Poon & Domingos, “Sum-Product Networks: A New Deep Architecture”

• hand-designed inductive bias (cf. convolutions)

Darwiche, “A Di↵erential Approach to Inference in Bayesian Networks”

• structure learning

• top-down clustering

• decision tree learning
28
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Selected Recent Work
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https://github.com/cambridge-mlg/EinsumNetworks ICML’20



Einsum Networks (EiNets)

• PCs used to be slow, even on Tensorflow, PyTorch, etc.

• reason: sparse and cluttered computational graph, yielding

many small calls to GPU kernels

• idea: summarize many sum-product operations in one layer

• all nodes on same level computed with a single GPU call:

einsum(’bip,bjp,ijop -> bop’, leftx, rightx,

params)
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Einsum Networks – Runtime and Memory

• runtime and memory comparison on random structures

• model sizes range from 10k-10M

• improvements of 1-2 orders of magnitude

• PCs now similarly e�cient as DNNs 31



Einsum Networks as Image Models
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Einsum Networks for Outlier Detection
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https://github.com/stelzner/supair [ICML’19]



Attend-Infer-Repeat – Vision as Inverse Graphics

• Attend-Infer-Repeat (AIR) based on variational inference

over thousands of variables (scene parameters, pixels, latent

codes)

• we replaced the vision models with PCs and “collapsed them

out” of the posterior, leaving a posterior over only a few

dozens of latent variables (scene parameters)

• hybrid between PCs and variational inference
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Learning Speed and Stability
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Multi-MNIST Sprites Noisy MNIST



Background and Reconstructions
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More Hybrids. . .

• Tan and Peharz, “Hierarchical Decompositional Mixtures
of Variational Autoencoders”

• PCs with VAE leaves

• main insight: PCs can incorporate noisy ELBOs in a

meaningful way

• VAE leaves are over few dimensions ! “easier inference

problem”

• delivered higher likelihoods than vanilla VAEs
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https://github.com/cambridge-mlg/SPVAE ICML’19



More Hybrids. . .

• Trapp, et al., “Deep Structured Mixtures of Gaussian
Processes”

• PCs over K Gaussian process experts

• well defined mixture of GPs with exact inference

• reduces cubic inference cost of GPs by divide-and-conquer

approach

39

https://github.com/trappmartin/DeepStructuredMixtures

AISTATS’20
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https://github.com/AlCorreia/cm-tpm AAAI’22



Discrete vs. Continuous Mixtures

Discrete Mixture

p(x) =
P

k

wkz }| {
p(Z = k) p(x |Z = k)

Continuous Mixture

p(x) =
R
p(z) p(x | z) dz

• most well known continuous mixture model: VAEs

• trouble of continuous mixtures: solving the integral over Z .

• VAEs address this with a variational approach/the ELBO

41



Continuous Mixtures of PCs

From standard PCs. . .
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Continuous Mixtures of PCs

. . . to continuous PCs mixtures
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Numerical Integration

• high-dimensional integrals are hard

• however, if we restrict the dimensionality of Z , we can use

numerical integration techniques such as

• (randomized quasi) Monte Carlo

• quadrature rules

• sparse grids

• all these numerical integration techniques approximate the

integral with a finite mixture:

p(x) ⇡
KX

k=1

w(zk) p(x | zk)

• This is again a PC!

• Thus, this can be seen as a new way to train PCs
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Results
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https://github.com/KareemYousrii/SPL NeurIPS’22
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https://github.com/KareemYousrii/SPL NeurIPS’22



Structured Output
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Semantic Probabilistic Layer

• logical world knowledge encoded in logic circuit c

• unconstrained probability distribution q: PC parametrized by

neural net

• with structured decomposability (stricter version of

decomposability) one can multiply c and q, yielding a new PC

of polynomial (quadratic) size

• this yields a predictive p(y | x) obeying logical constraints!
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Advertisement 1

• improving maturity level of DNA storage

• 1 PhD position for probabilistic-symbolic ML (with me)

• 1 PhD position for computer vision (with Thomas Pock)
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Advertisement 2

• developing sustainable Large-scale Organic Batteries

• 2 PhD positions for probabilistic ML, Bayesian optimization,

AI4Science (with me and Roman Kern)

robert.peharz@tugraz.at
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Reading:

• Probabilistic Circuits: A Unifying Framework for Tractable

Probabilistic Models

• Foundations of Sum-Product Networks for Probabilistic

Reasoning

Tutorials:

• NeurIPS’22 Tutorial (video)

• ECML/PKDD’20 Tutorial (video)

• AAAI’20 Tutorial (slides)
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https://github.com/Juice-jl/ProbabilisticCircuits.jl

https://github.com/SPFlow/SPFlow


