
Probabilistic Circuits

Robert Peharz

Graz University of Technology

Generative Modeling Summer School

Copenhagen, 29
th

June 2023

Generative Modeling in a Nutshell

1

⇡

Model Distribution P✓, p✓ True Distribution P⇤
, p⇤

Why Probability?

1. Generative models are about “generating new data”—it’s

hard to do that without probability or randomness

2. Probability is a consistent and optimal tool for reasoning

under uncertainty

2

Reasoning under Uncertainty Example

Cat vs. Dog classifier

If you know the true distribution

p⇤(X ,Y) producing i.i.d. samples of

x (image) and y (label), the Bayes

optimal classifier is

ŷ = argmax
y

p⇤(y | x) = argmax
y

p⇤(y , x)

No classifier has a higher accuracy.

3

Reasoning under Uncertainty Example

Regression

Say you want to predict Y

from X , and you know the

true distribution p⇤(Y ,X)

producing i.i.d. samples of

X ,Y .

4

Reasoning under Uncertainty Example

You might compute the

conditional distribution

p⇤(Y | x) = p⇤(Y , x)

p⇤(x)| {z }
=
R
p⇤(x ,y) dy

for all values of x .

4

Reasoning under Uncertainty Example

Then you can construct the

true regression function

f (x) := Ep⇤(Y | x)[Y | x]

which is just the expectation

of Y given x

No function has lower

squared loss.

4

Reasoning under Uncertainty Example

Of course, that Y is output

and X is input was arbitrary,

so the whole “trick” works

also in the other direction:

p⇤(X | y) = p⇤(y ,X)

p⇤(y)| {z }
=
R
p⇤(x ,y) dx

4

Reasoning under Uncertainty Example

Of course, that Y is output

and X is input was arbitrary,

so the whole “trick” works

also in the other direction:

f (y) := Ep⇤(X | y)[X | y]

4

Probability = consistent and optimal reasoning under uncertainty

“Probability is nothing but common sense reduced to

computation.”

—P.S. Laplace

“Probabilistic reasoning is about halfway to AI.”

—R. Peharz

5

see also Pearl, Jaynes, Cox Theorem

Inference Routines

Joint probability distribution ⇡ knowledge base + uncertainty

There are many inference routines which might be applied (and

combined) to answer queries from your joint:

sampling x ⇠ p(X)

density, likelihood p(x)
marginalization p(X) =

R
p(X , y) dy (

P
in discrete case)

conditioning p(Y | x) = p(x ,Y)

p(x)
expectations Ep(X)[f (X)] (e.g. moments)

maximization (MAP) argmaxx p(x)

Can your generative model do this?

6

Inference Routines

Joint probability distribution ⇡ knowledge base + uncertainty

There are many inference routines which might be applied (and

combined) to answer queries from your joint:

sampling x ⇠ p(X)

density, likelihood p(x)
marginalization p(X) =

R
p(X , y) dy (

P
in discrete case)

conditioning p(Y | x) = p(x ,Y)

p(x)
expectations Ep(X)[f (X)] (e.g. moments)

maximization (MAP) argmaxx p(x)

Can your generative model do this?

6

Inference Routines

For which model class and inference routine does there exist an

exact and e�cient algorithm?

GANs VAEs EBMs Flows ARMs PCs

sampling

density

marginals

condition

moments

max (MAP) ()

E ()
7

PCs can do all these amazing things. Where’s the catch?

• still many interesting queries which are intractable in PCs

• tractability-vs-expressivity dilemma

• expressive models are less tractable

• tractable models are less expressive

• however, don’t jump to conclusion!

• tractable models get you surprisingly far

• we have by far not reached their true potential

• ultimately, it’s the right mix of methods for the win

8

Probabilistic Circuits: Definitions

What are Probabilistic Circuits?

• probabilistic circuits (PCs): special type of neural network

• they represent a density p✓(X) for given random variables X

• basic mode of operation: “sample x in, p✓(x) out”

• inference routines (marginals, conditionals, etc.) are

computed via “modified” network passes

• in practice, implemented in the log-domain (log p✓(x))

9

Three Types of Units

distribution node, input node, leaf

sum node, mixture

product node, factorization

10

Distribution Node, Input Node, Leaf Definition

• a distribution node, input node, leaf L is some “simple”

tractable distribution function, e.g. Gaussian, Categorical, etc.

• input: sample x

• output: p(x), density evaluated at x

• density as special case of “non-linear activation function”

• Important: a leaf is usually a distribution over only a subset

of all variables, denoted as scope sc(L)

• the scope as like a “receptive field” in neural nets

11

Gaussian Leaves Example

Parameters µ = (µ1, . . . , µD), ⌃ =

0

B@
v11 . . . v1D
.
.
.

. . .
.
.
.

vD1 . . . vDD

1

CA

All kinds of tractable inference routines:

• sampling: via eigen decomposition of ⌃

• density: p(x) = 1p
(2⇡)D |⌃|

exp
�
�1

2
(x � µ)T⌃�1

(x � µ)
�

• marginals: simply discard rows/columns from µ and ⌃

• conditionals: µq|e = µq + ⌃qe⌃
�1
ee (xe � µe)

⌃q|e = ⌃qq + ⌃qe⌃
�1
ee ⌃eq

• mean, (co)variance: µ, ⌃

• max: µ

12

Sum Node, Mixture Definition

• let p1, p2, . . . , pK be

components, i.e. distributions

over the same scope

• let w1, w2, . . . , wK be weights

with wk � 0,
P

k wk = 1

• a sum node, mixture S

computes the distribution

p(X) =

X

k

wk pk(X)

• for any p1, . . . , pK , the mixture p

is a proper distribution

13

Mixtures inherit tractability!

• assume p1, . . . , pK have tractable marginals and conditionals

• then also the mixture distribution is tractable

• Marginals: assume we want to marginalize Xi

p(X\i) =

Z X

k

wk pk(X\i , xi) dxi

=

X

k

wk

Z
pk(X\i , xi) dxi

| {z }
tractable

=

X

k

wk pk(X\i)

• of course, this also works with many variables

• “marginal of mixture = mixture of component marginals”

14

Mixtures inherit tractability! Cont’d

• Conditionals: say we want to compute p(Xq | xe)

p(Xq | xe) / p(Xq, xe) =
X

k

wk pk(Xq, xe)

=

X

k

unnormalized weightz }| {
wkpk(xe) pk(Xq | xe)| {z }

tractable, normalized

• hence, by setting w̃k =
wkpk (xe)P
l wl pl (xe) we get

p(Xq | xe) =
X

k

w̃k pk(Xq | xe)

• “conditional of mixture , mixture of component conditionals”

15

Mixtures inherit tractability! Cont’d

• Maximization: in general intractable in mixture models, even

if components allow tractable maximization. . .

• however, if the supports of the components don’t overlap,

maximization becomes tractable

• specifically, if for each x we have that at most one pk(x) > 0,

we say the mixture is deterministic

• then, we can write

max
x

X

k

wk pk(x) = max
x

deterministic sumz}|{
max
k

wk pk(x) = max
k

wk

tractablez }| {
max

x
pk(x)

• we can also keep track of the argmax

• “max of mixture = mixture of component max”

16

Mixtures inherit tractability! Cont’d

• Sampling: a mixture model can be seen as a latent variable

model, involving a marginalized latent variable Z

p(X) =

X

k

wkz }| {
p(Z = k) p(X |Z = k) =

X

k

p(Z = k ,X)

• Sampling can be done in two stages:

• sample Z ⇠ Categorical(w1, . . . ,wK)

• sample from selected component x ⇠ pZ

• “sample of mixture = selecting among component samples”

17

Mixtures inherit tractability! Cont’d

Inference in mixtures reduces to inference at components!

18

Product Node, Factorization Definition

• let p(X1), p(X2), . . . , p(XK) be

distributions over disjoint sets of

variables X1,X2, . . . ,XK

• a product node P computes the

distribution

p(X1, . . . ,XK) =
Y

k

p(Xk)

• that is, a product node is simply

a factorized distribution over

{X1, . . . ,XK}

19

Factorizations inherit tractability!

• let p(X1), . . . , p(XK) have tractable marginals and

conditionals

• then also the factorized distribution is tractable

• Marginals: assume we want to marginalize Xi

• since X1,X2, . . . ,XK are disjoint, Xi only appears in one set,

say Xj

p(X\i) =

Z 0

@
Y

k 6=j

p(Xk)

1

A p(Xj\i , xi) dxi

=

0

@
Y

k 6=i

p(Xk)

1

A

tractablez }| {Z
p(Xj\i , xi) dxi

• of course, marginalization also works with many variables

• “marginal of product = product of marginals”

20

Factorizations inherit tractability! cont’d

• Conditionals: say we want to compute p(Xq | xe)
• let Xqk = Xq \ Xk and Xek = Xe \ Xk

p(Xq | xe) =
p(Xq, xe)
p(xe)

=

Q
k p(Xqk , xek)Q

k p(xek)
=

Y

k

p(Xqk | xek)

• “conditionals of product = product of conditionals”

21

Factorizations inherit tractability! cont’d

• Maximization:

max
x

Y

k

p(xk) =
Y

k

max
xk

p(xk)

• argmax of a product is simply the concatenation of the

argmax’es of the individual factors

• “max of product = product of max”

• Sampling:

• just independently sample factors

• “sampling of product = concatenate samples of factors”

22

Factorizations inherit tractability! Cont’d

Inference in factorizations reduces to inference at factors!

23

Three Types of Units

distribution node tractable inference by default

sum node
inference reduces to inference in

components

product node
inference reduces to inference in

factors

• probabilistic circuits (PCs) are networks of these units

• by induction, all nodes are a distribution over their scope

• inference reduces to inference at the leaves!

24

Smoothness and Decomposability Definition

Leaves are distributions (L), internal

nodes are sums (S) or products (P).

A PC is smooth, if for all sum nodes

it holds, that all input nodes are over

same scope—that just means that

all sums are proper mixtures.

A PC is decomposable, if for all

product nodes it holds, that all input

nodes have disjoint scope—that just

means that all products are proper

factorizations.

25

Inference in PCs

• the inference “tricks” for mixtures and products recursively

apply to PCs

• ultimately, inference in PCs reduces to inference at the leaves

(plus some modifications of parameters/structures)

• think of this as a neural network with “many modes of

operation”

• smoothness and decomposability enable tractable

marginalization and conditioning

• determinism enables tractable maximization

• there are more interesting constraints and corresponding

inference routines

26

Marginalization Example

27

Assume we want to

marginalize a variable M,

which is contained in U

Marginalization Example

27

Marginalization Example

27

Marginalization Example

27

Due to decomposability, M

appears only in one child of

each product node

Marginalization Example

27

Marginalization Example

27

Reduces to marginalization

at leaves + standard

forward pass!

Special case U = {M}:
marginalization at leaf

delivers constant 1

Learning PCs

• PCs are between neural nets and probabilistic graphical models

• learning techniques are carry over from these approaches

• Parameters:
• closed form maximum likelihood (deterministic PCs)

• gradient based maximum likelihood

• expectation-maximization

Peharz et al. “On the latent variable interpretation in Sum-Product Networks”

• Bayesian

• Structure:
• compile from other models (e.g. Bayesian networks)

Poon & Domingos, “Sum-Product Networks: A New Deep Architecture”

• hand-designed inductive bias (cf. convolutions)

Darwiche, “A Di↵erential Approach to Inference in Bayesian Networks”

• structure learning

• top-down clustering

• decision tree learning
28

j
-

Selected Recent Work

29

https://github.com/cambridge-mlg/EinsumNetworks ICML’20

Einsum Networks (EiNets)

• PCs used to be slow, even on Tensorflow, PyTorch, etc.

• reason: sparse and cluttered computational graph, yielding

many small calls to GPU kernels

• idea: summarize many sum-product operations in one layer

• all nodes on same level computed with a single GPU call:

einsum(’bip,bjp,ijop -> bop’, leftx, rightx,

params)

30

Einsum Networks – Runtime and Memory

• runtime and memory comparison on random structures

• model sizes range from 10k-10M

• improvements of 1-2 orders of magnitude

• PCs now similarly e�cient as DNNs 31

Einsum Networks as Image Models

32

Einsum Networks for Outlier Detection

33

34

https://github.com/stelzner/supair [ICML’19]

Attend-Infer-Repeat – Vision as Inverse Graphics

• Attend-Infer-Repeat (AIR) based on variational inference

over thousands of variables (scene parameters, pixels, latent

codes)

• we replaced the vision models with PCs and “collapsed them

out” of the posterior, leaving a posterior over only a few

dozens of latent variables (scene parameters)

• hybrid between PCs and variational inference

35

Attend-Infer-Repeat – Vision as Inverse Graphics

• Attend-Infer-Repeat (AIR) based on variational inference

over thousands of variables (scene parameters, pixels, latent

codes)

• we replaced the vision models with PCs and “collapsed them

out” of the posterior, leaving a posterior over only a few

dozens of latent variables (scene parameters)

• hybrid between PCs and variational inference
35

Learning Speed and Stability

36

Multi-MNIST Sprites Noisy MNIST

Background and Reconstructions

37

More Hybrids. . .

• Tan and Peharz, “Hierarchical Decompositional Mixtures
of Variational Autoencoders”

• PCs with VAE leaves

• main insight: PCs can incorporate noisy ELBOs in a

meaningful way

• VAE leaves are over few dimensions ! “easier inference

problem”

• delivered higher likelihoods than vanilla VAEs

38

https://github.com/cambridge-mlg/SPVAE ICML’19

More Hybrids. . .

• Trapp, et al., “Deep Structured Mixtures of Gaussian
Processes”

• PCs over K Gaussian process experts

• well defined mixture of GPs with exact inference

• reduces cubic inference cost of GPs by divide-and-conquer

approach

39

https://github.com/trappmartin/DeepStructuredMixtures

AISTATS’20

40

https://github.com/AlCorreia/cm-tpm AAAI’22

Discrete vs. Continuous Mixtures

Discrete Mixture

p(x) =
P

k

wkz }| {
p(Z = k) p(x |Z = k)

Continuous Mixture

p(x) =
R
p(z) p(x | z) dz

• most well known continuous mixture model: VAEs

• trouble of continuous mixtures: solving the integral over Z .

• VAEs address this with a variational approach/the ELBO

41

Continuous Mixtures of PCs

From standard PCs. . .

42

Continuous Mixtures of PCs

. . . to continuous PCs mixtures

42

Numerical Integration

• high-dimensional integrals are hard

• however, if we restrict the dimensionality of Z , we can use

numerical integration techniques such as

• (randomized quasi) Monte Carlo

• quadrature rules

• sparse grids

• all these numerical integration techniques approximate the

integral with a finite mixture:

p(x) ⇡
KX

k=1

w(zk) p(x | zk)

• This is again a PC!

• Thus, this can be seen as a new way to train PCs

43

Results

44

45

https://github.com/KareemYousrii/SPL NeurIPS’22

45

https://github.com/KareemYousrii/SPL NeurIPS’22

Structured Output

46

Semantic Probabilistic Layer

• logical world knowledge encoded in logic circuit c

• unconstrained probability distribution q: PC parametrized by

neural net

• with structured decomposability (stricter version of

decomposability) one can multiply c and q, yielding a new PC

of polynomial (quadratic) size

• this yields a predictive p(y | x) obeying logical constraints!
47

Advertisement 1

• improving maturity level of DNA storage

• 1 PhD position for probabilistic-symbolic ML (with me)

• 1 PhD position for computer vision (with Thomas Pock)

48

Advertisement 2

• developing sustainable Large-scale Organic Batteries

• 2 PhD positions for probabilistic ML, Bayesian optimization,

AI4Science (with me and Roman Kern)

robert.peharz@tugraz.at

49

Reading:

• Probabilistic Circuits: A Unifying Framework for Tractable

Probabilistic Models

• Foundations of Sum-Product Networks for Probabilistic

Reasoning

Tutorials:

• NeurIPS’22 Tutorial (video)

• ECML/PKDD’20 Tutorial (video)

• AAAI’20 Tutorial (slides)

50
https://github.com/Juice-jl/ProbabilisticCircuits.jl

https://github.com/SPFlow/SPFlow

